Reinforcement Learning with a Corrupted Reward Channel

Tom Everitt, Victoria Krakovna, Laurent Orseau, Marcus Hutter, Shane Legg

IJCAI 2017 and arXiv
(slides adapted from Tom's IJCAI talk)
Motivation

- Want to give RL agents **good incentives**
- Reward functions are hard to specify correctly (complex preferences, sensory errors, software bugs, etc)
- **Reward gaming** can lead to undesirable / dangerous behavior
- Want to build agents robust to reward misspecification
Examples

RL agent takes control of reward signal (wireheading)

CoastRunners agent goes around in a circle to hit the same targets (misspecified reward function)

RL agent shortcuts reward sensor (sensory error)
Corrupt reward formalization

- Reinforcement Learning is traditionally modeled with **Markov Decision Process (MDP)**:
 \[\langle S, A, T, R \rangle \]

- This fails to model situations where there is a difference between
 - True reward \(\hat{R}(s) \)
 - Observed reward \(\hat{\hat{R}}(s) \)

- Can be modeled with **Corrupt Reward MDP**:
 \[\mu = \langle S, A, T, \hat{R}, \hat{\hat{R}} \rangle \]
Performance measure

- $\hat{G}_t(\mu, \pi, s_0) = \text{expected cumulative true reward of } \pi \text{ in } \mu$
- The reward π loses by not knowing the environment μ is the worst-case regret

$$\text{Reg}(\mathcal{M}, \pi, s_0, t) = \max_{\mu \in \mathcal{M}, \pi'} [\hat{G}_t(\mu, \pi', s_0) - \hat{G}_t(\mu, \pi, s_0)]$$

- Sublinear regret if π ultimately learns μ:
 $$\text{Regret} / t \to 0$$
No Free Lunch

• **Theorem (NFL):**
 Without assumptions about the relationship between true and observed reward, all agents suffer high regret:

 \[
 \text{Reg}(\mathcal{M}, \pi, s_0, t) \geq \frac{1}{2} \max_{\tilde{\pi}} \text{Reg}(\mathcal{M}, \tilde{\pi}, s_0, t).
 \]

• Unsurprising, since no connection between true and observed reward

• We need to pay for the “lunch” (performance) by making assumptions
Simplifying assumptions

- **Limited reward corruption**
 - Known safe states $S^{\text{safe}} \subseteq S$ not corrupt, $\hat{R}(s) = \hat{R}(s)$
 - At most q states are corrupt

- **“Easy” environment**
 - Communicating (ergodic)
 - Agent can choose to stay in any state
 - Many high-reward states: $r < 1/k$ in at most $1/k$ states

Are these sufficient?
Agents

Given a prior b over a class M of CRMDPs:

- CR agent maximizes true reward:
 \[
 \pi_{b,t}^{\text{CR}} = \arg\max_{\pi} \mathbb{E}_b^\pi \left[\sum_{i=0}^{t} \mathcal{R}(s_i) \right]
 \]

- RL agent maximizes observed reward:
 \[
 \pi_{b,t}^{\text{RL}} = \arg\max_{\pi} \mathbb{E}_b^\pi \left[\sum_{i=0}^{t} \hat{\mathcal{R}}(s_i) \right]
 \]

http://www.itvscience.com/watch-micro-robots-avoid-crashes/
CR and RL high regret

- **Theorem:** There exist classes M that
 - satisfy the simplifying assumptions, and
 - make both the CR and the RL agent suffer near-maximal regret

- Good intentions of the CR agent are not enough
Avoiding Over-Optimization

- Quantilizing agent π^δ randomly picks a state with reward above threshold δ and stays there.

- **Theorem:** For q corrupt states, exists δ s.t. π^δ has average regret at most $1 - \left(1 - \sqrt{q/|S|}\right)^2$ (using all the simplifying assumptions).
Experiments

http://aslanides.io/aixijs/demo.html

![Graphs showing observed and true reward over cycles for different algorithms.](image)
Richer Information

Reward Observation Graphs

- **RL:**
 - Only observing a state's reward from that state

- **Decoupled RL:**
 - Cross-checking reward info between states
 - Inverse RL, Learning Values from Stories, Semi-supervised RL
Learning True Reward

Safe state
\[s^\text{safe} \]

\[s' \]

\[\cdots \]

Majority vote
\[s^\text{safe} \]

\[s' \]

\[\cdots \]
Decoupled RL

CRMDP with decoupled feedback is a tuple \(\langle S, A, T, \hat{R}, \{\hat{R}_s\}_{s \in S} \rangle \) where

- \(\langle S, A, T, \hat{R} \rangle \) is an MDP, and
- \(\{\hat{R}_s\}_{s \in S} \) is a collection of observed reward functions \(\hat{R}_s : S \rightarrow [0, 1] \cup \{\#\} \)

\(\hat{R}_s(s') \) is the reward the agent observes for state \(s' \) from state \(s \) (may be blank)

RL is the special case where \(\hat{R}_s(s') \) is blank unless \(s = s' \).
Adapting Simplifying Assumptions

- A state s is **corrupt** if exists s' such that $\hat{R}_s(s') \neq \hat{R}(s')$ and $\hat{R}_s(s') \neq \#$

- **Simplifying assumptions:**
 - States in S^{safe} are never corrupt
 - At most q states overall are corrupt
 - *Not assuming* easy environment
Minimal example

- $S = \{s1, s2\}$
- Reward either 0 or 1
- Represent $\hat{R}, \hat{R}_{s1}, \hat{R}_{s2}$ with reward pairs
- Both states observe themselves & each other
- $q = 1$ (at most 1 corrupt state)

<table>
<thead>
<tr>
<th></th>
<th>\hat{R}_{s1}</th>
<th>\hat{R}_{s2}</th>
<th>\hat{R} possibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decoupled RL</td>
<td>(0, 1)</td>
<td>(0, 1)</td>
<td>(0, 1)</td>
</tr>
<tr>
<td>RL</td>
<td>(0, #)</td>
<td>(#, 1)</td>
<td>(0, 0), (0, 1), (1, 1)</td>
</tr>
</tbody>
</table>
Decoupled RL Theorem

- Let $S_{s'}^{\text{obs}}$ be the states observing s'
- If for each s', either
 - $S_{s'}^{\text{obs}} \cap S^{\text{safe}} \neq \emptyset$, or
 - $|S_{s'}^{\text{obs}}| > 2q$

then
- \hat{R} is learnable, and
- CR agent has sublinear regret
Takeaways

- Model imperfect/corrupt reward by CRMDP
- No Free Lunch
- Even under simplifying assumptions, RL agents have near-maximal regret
- Richer information is key (Decoupled RL)
Future work

- Implementing decoupled RL
- Weakening assumptions
- POMDP case
- Infinite state space
- Non-stationary corruption
- your research?
Thank you!

Co-authors:

Questions?